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Abstract

Proteins that show similarity in their equilibrium dynamics can be aligned by identifying regions that
undergo similar concerted movements. These movements are computed from protein native structures
using coarse-grained elastic network models. We show the existence of common large-scale movements
in enzymes selected from the main functional and structural classes. Alignment via dynamics does not
require prior detection of sequence or structural correspondence. Indeed, a third of the statistically
significant dynamics-based alignments involve enzymes that lack substantial global or local structural
similarities. The analysis of specific residue–residue correspondences of these structurally dissimilar
enzymes in some cases suggests a functional relationship of the detected common dynamic features.
Including dynamics-based criteria in protein alignment thus provides a promising avenue for relating
and grouping enzymes in terms of dynamic aspects that often, though not always, assist or accompany
biological function.
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Available alignment tools detect similarities among pro-
teins in the first step of the logical cascade: sequence !
structure ! function. We introduce and apply a general
and systematic algorithm to address functional relation-
ships of enzymes by including dynamics in the alignment
procedure. We focus on a common although not universal
feature of enzymatic function, internal large-scale con-

certed movements. A large body of evidence links these
movements to the structural changes that often accom-
pany protein functions. For example, the displacements
involved in allosteric changes in many proteins occur
along the collective coordinates corresponding to the
low-energy modes of the two stable structures (Delarue
and Sanejouand 2002; Falke 2002; Rod et al. 2003;
Alexandrov et al. 2005; Ming and Wall 2005; Smith
et al. 2005; Zheng et al. 2007).

The collective and large-scale character of these fluc-
tuations has justified their characterization by simplified
approaches, typically elastic network models (ENM)
(Bahar et al. 1997; Hinsen 1998; Atilgan et al. 2001;
Delarue and Sanejouand 2002; Micheletti et al. 2004;
Sulkowska et al. 2007). These models rely on a simplified
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free-energy function with quadratic dependence on dis-
placements of amino acids from their reference position.
This harmonic free-energy approximation would be
expected a priori to hold only for very small fluctuations
of the protein structure. However, the harmonic approx-
imation to the free energy has proved very valuable for
large-scale changes also (Levy et al. 1984; Horiuchi and
Go 1991; Brooks et al. 1995; Tirion 1996; Hinsen 1998;
Pontiggia et al. 2007). Indeed, linear combinations of the
10 lowest-energy modes predicted by ENMs are generally
sufficient to describe most of the conformational fluctua-
tions observed in extensive MD simulations as well as
functionally oriented changes between apo and holo
forms of enzymes (Delarue and Sanejouand 2002; Falke
2002; Rod et al. 2003; Alexandrov et al. 2005; De los
Rios et al. 2005; Ming and Wall 2005; Smith et al. 2005;
Zheng et al. 2007).

Here we apply the collective low-energy modes of
residues determined by these simplified dynamic models
to protein alignment. Unlike in structural alignments,
matched residues need show only loose spatial proximity.
The spatial tolerance is such that the relative movements
in the two enzymes are well defined, yet sufficiently
generous to establish correspondences between, for ex-
ample, different types of secondary structure elements.

This work extends recent studies (Carnevale et al.
2006; Capozzi et al. 2007), in which common features
were detected among the low-energy modes of proteolytic
enzymes and EF-hand motifs, the structural alignments
of which were known. Here we avoid the asymmetric
treatment of structural and dynamic features by using a
novel optimization scheme that identifies the set of
residues that has the highest consistency of large-scale
displacements, within tolerant structural correspondence.
Combining structural and dynamic criteria on an equal
footing appears to be necessary to detect general anal-
ogies of the internal motion of biomolecules. A pure
dynamic alignment, that is, rewarding the consistency of
the low-energy modes’ directionality in two sets of
residues regardless of their relative spatial relationship
would, in fact, not necessarily identify regions that
undergo analogous dynamic modulations. At the same
time, the matching of the ENM-derived low-energy
modes is not reducible to establishing correspondences
of simple local geometric features of two protein struc-
tures. The algorithm, in fact, goes beyond capturing
correspondences between the profiles of amino acid
mobility, which largely reflect static local structural
(density) features (Halle 2002), and promotes the accord
of nonlocal correlations of amino acid displacements in
thermal equilibrium. In view of the collective, nonlocal,
nature of the ENM-derived equilibrium fluctuations ex-
ploited by the algorithm it appears justified to term the
alignment as dynamics-based.

The alignment procedure is applied to all pairs from a
set of 76 enzymes which represent the main functional
families with minimal structural redundancy. The align-
ment score of ;30 enzyme pairs was found to be out-
standing by standard criteria of statistical significance.
Two-thirds of such alignments reflect global or partial
correspondences in the fold architecture. Notably, the
remaining third involve proteins with only loose anal-
ogies of secondary and tertiary structural elements but
with precisely matching large-scale dynamics. Even for
structurally dissimilar pairs of enzymes the dynamics-
based alignment can induce a remarkable spatial super-
position of functionally relevant regions. This suggests
a biological rationale underlying specific common con-
certed movements. Further development of tools capable
of detecting such dynamic correspondences is expected to
provide novel elements and perspectives to address the
relationships among sequence, structure, and function of
enzymes.

Results and Discussion

We searched for common large-scale movements in pairs
of enzymes chosen as representative of different func-
tional classes according to the Enzyme Commission
(EC) (PDB codes were taken from http://www.ebi.ac.uk/
thornton-srv/databases/CSA/). From each of the six main
EC classes, we selected one representative of each group
of molecules sharing the same structural class, architec-
ture, and topology, as defined by the CATH classification
of protein structural patterns (Pearl et al. 2005). The
resulting working set contained 76 proteins providing a
comprehensive and heterogeneous coverage of enzymatic
functions and structures (the list of representatives is
provided in the Supplemental material). As the removal
of structural redundancy was carried out for each EC
class separately, representatives of different functional
families can have the same topology, according to the
CATH classification. This degeneracy, which affects only
47 of the 2850 distinct pairings of the 76 representatives,
was retained as its removal would have led to an uneven
representation of the distinct EC families.

Each pair of enzymes was considered for the low-
energy-modes alignment procedure which is represented
schematically in Figure 1 (for details, see Materials and
Methods). As in other contexts (Holm and Sander 1996;
Altschul et al. 1997; Notredame et al. 2000; Chenna et al.
2003; Lesk 2004; Shatsky et al. 2004a,b; Konagurthu
et al. 2006) any alignment establishes a one-to-one
pairing among ‘‘marked’’ amino acids in the two proteins,
plus gaps indicating insertions and deletions. For each
pair of representatives we considered thousands of align-
ments involving increasing numbers of residues, n ¼ 75,
100, 125, . . ., up to the maximum length dictated by the
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shorter chain. The best alignment was found by max-
imizing a scoring function that rewards correspondences
between residues with both good structural superposition
and good accord of the low-energy modes (see Materials
and Methods). The low-energy modes of the marked resi-
dues are calculated within an elastic network approach.
This allows a transparent modeling of the potential of
the mean force governing the effective interactions of
the marked residues that accounts both for direct ‘‘con-
tact’’ interactions and for indirect ones mediated by the
nonaligned residues.

For each enzyme pair, a stochastic optimization tech-
nique produced the best-scoring alignment. The resulting
scores are graphically represented in Figure 2 in which

the two matrices of panels A and B differ only in the way
the entries are ordered. In A, rows and columns appear in
order of EC code; in B, in order of CATH code. These two
alternative groupings allow an intuitive perception of how
functional and structural analogies are reflected by the
alignment score. The qualitative appearance of the two
plots is markedly different. The minimally redundant
coverage of the different EC families produces a fairly
uniform scatter of good scores across various EC groups
(Fig. 2A). It is nevertheless interesting to notice the
presence of light bands corresponding to EC groups that
are poorly alignable in general. The most notable of such
groups comprises hydrolases acting on acid anhydrides
(principal EC codes: 3.6). By contrast, the uneven

Figure 1. Schematic diagram of the dynamics-based alignment. For each pair of enzyme structures (left) thousands of tentative

alignments, that is, one-to-one correspondences of amino acids, are considered. For each alignment (A) the aligned residues are

superposed, and (B) for each structure, the low-energy modes of the aligned residues are calculated within the elastic network model. A

numerical score, to evaluate the quality of each alignment considered, measures the consistency between the structural alignment and

the dynamics reflected in the low-lying normal modes. That is, a particular residue–residue correspondence in the alignment contributes

favorably to the score if the residues are both well-superposed spatially, and show similar patterns of displacement in the low-lying

modes. The optimal alignment is identified by maximizing this score through a stochastic optimization loop. Images of protein

structures and low-energy modes were produced with the VMD graphical package (Humphrey et al. 1996).

Figure 2. Matrices reporting the dynamics-based score for all aligned enzyme pairs. Good (poor) alignment scores are shown with

dark blue (white) color. (A) Enzymes are ordered in each axis according to EC codes, black and red lines delimit enzymes with the

same first and first two EC numbers, respectively. (B) Enzymes are ordered according to CATH codes. Black (red) lines separate

different classes (architectures).

Zen et al.

920 Protein Science, vol. 17

JOBNAME: PROSCI 17#5 2008 PAGE: 3 OUTPUT: Thursday April 10 13:41:26 2008

csh/PROSCI/152310/ps0733902

Figs. 1,2 live 4/C



representation of different structural classes, architectures,
and topologies in the data sets leads to a manifest
inhomogeneous character of the matrix ordered by the
structure of Figure 2B. In particular, the class with the
largest proportion of good scores is the a-b one (class 3),
which is also the most populated class in the set. Not all its
architectural subgroups, however, display the same degree
of ‘‘alignability.’’ Both in absolute and relative terms, the
most prominent architecture is the a-b barrel (principal
CATH numbers: 3.20). Also worth noting is that good
alignment scores are attained for several interarchitecture
alignments; a few of such cases will be discussed later.
Finally, a noticeable case of overall poor alignability is the
set of the mainly a/up-down bundle (principal CATH
numbers: 1.20), which shows correspondences only with
enzymes belonging to the same structural group.

The extent to which the various degrees of structural
relatedness impact on the dynamic correspondences is
summarized in Figure 3A. The histogram portrays the
distribution of optimized scores for all enzyme pairs and
also pairs having the same class, architecture, and topology.
It is noted (see inset) that the very few pairings (47 entries)
of enzymes with the same topology tend to have alignment
scores distinctly better than typical enzyme pairs. On the
other hand no such pronounced deviation from the average
behavior is observed for pairs with the same structural
class or even architecture (that is, the two highest levels of
the hierarchical structural classification in CATH).

Similarities in dynamics between structurally related
enzymes is expected. We therefore wish to focus partic-
ularly on the alignments that are highest ranking accord-
ing to the dynamics-based score. The distribution of their
scores is shown in Figure 3B. In this figure, alignments
among enzymes with the same topology (the first three
CATH numbers) and the same topology plus homology
(the entire CATH code) have been highlighted. Among
the top ;20 alignments are six pairs sharing the full
CATH code (the total number of such homologous pairs
in the set is eight). This confirms the intuitive expectation
that significant sequence and structural similarities likely
result in pronounced dynamic similarities (Keskin et al.
2000).

However, it is important to note that in Figure 3B,
besides these expected good correspondences, a fraction
of the alignments approaching the tail pertain to pairs that
differ at the level of class or architecture. These cases are
of particular interest as they would not be singled out by
criteria based solely on the CATH structural classifica-
tion. A selection of these alignments, as well as other
structurally induced ones, will be discussed in the fol-
lowing sections.

Our considerations will be restricted to the alignments
that are statistically significant. The significance analysis
was performed by comparing the observed scores of

Figure 3A with a reference distribution of scores recorded
over a set of enzymes that are not expected a priori to lead
to a sizeable number of meaningful alignments. In light of
previous considerations, this reference set was assembled
by selecting one representative, the longest, for each of
the 56 different topologies in our data set. The resulting
histogram of the 1540 alignment scores was compared
against standard statistical distributions arising in align-
ment contexts (Levitt and Gerstein 1998; Taylor 2006)
including the extreme value (Gumbel) and the Gaussian
distributions, see Figure 3C. Assuming a Poissonian
uncertainty of the height of the histogram, the x2

associated to the Gumbel distribution is 3.7, while that
of the Gaussian distribution is 1.1. As is visible in Figure

Figure 3. (A) Distribution of the alignment score calculated over all 2850

enzyme pairs (the inset presents an enlargement of the histogram high-

lighting pairs with the same topology). The contribution of pairs with the

same structural class, architecture, topology, and homologous superfamily

are also shown. (B) Tail of the distribution associated with the highest

alignment scores. Pairs that have the same topology and homologous

superfamily are highlighted. (C) Filled histogram: distribution of align-

ment scores over the 56 representatives (highlighted in Table 1) of different

topology. The continuous and dashed lines are the best fits to the histogram

using Gaussian and Gumbel distributions. Parameters (mean and spread)

of the best-fitting Gaussian: m ¼ 0.041413, s ¼ 0.041493. (D) Number

of nonstatistically significant (false positive) alignments expected to arise

within the top-ranking alignments.
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3C, the Gaussian distribution appears to provide a good
fit to the data set within three standard deviations to
the left and right of the mean value. The latter distribu-
tion was consequently taken a posteriori as providing a
viable statistical description of the observed measure-
ments and was accordingly used to measure the statis-
tical significance of the top-scoring dynamics-based
alignments.

In particular, from the p-value analysis we estimated
the number of nonsignificant entries (false positives)
expected among the top alignments (Levitt and Gerstein
1998; Storey and Tibshirani 2003). The associated curve,
shown in Figure 3D, indicates that within the top 26
alignments, fewer than 10% are expected to be false
positives. This threshold provides an acceptable balance
between the number of entries declared significant (26)
and the fraction that is deemed reliable (>90%). All
further considerations will therefore be limited to the
pairings in the top 26 alignments, which are reported in
Table 1.

Within this set, the number of pairings that can be
ascribed to overall similarities of the global fold topology
is 16, including six homologous cases. A more refined
and quantitative study of the level of subtler structural

correspondence in the set was carried out with DALI
(Holm and Sander 1996; Holm and Park 2000), a power-
ful structural alignment tool that detects partial similar-
ities based on the similarity between two proteins of inter-
residue distance matrices. For a consistent comparison
with our results, the statistical confidence threshold on
the DALI results (Sierk and Pearson 2004) was also set
to 90% (leading to 18 significant DALI pairings). It was
found that 14 of our top 26 alignments had significant
DALI scores. These included 12 pairs with the same
topology (including all of the six homologous pairs). Of
the 10 pairings with different topology selected by our
method only two turned out to have significant partial
alignments according to DALI. These alignments were
between proteins 2dhn-2g64 and 1dy4-2ayh. Importantly,
within the 18 statistically significant DALI pairings these
two alignments were the only ones involving different
CATH topology. Consequently, the remaining eight of
the 26 (i.e., ;30%) dynamics-based alignments deemed
significant involved pairings between enzymes whose
structural relatedness is not easily detectable at the same
level of statistical significance.

A selected number of significant alignments, exem-
plifying the sophisticated interplay of structural and

Table 1. List of the top 26 dynamics-based alignments

Rank PDB1 EC CATH Length PDB2 EC CATH Length n RMSIP RMSD (Å)

1 1ajz 2 3.20.20.20 282 1gqn 4 3.20.20.70 252 150 0.8525 5.103

2 1cqh 4 3.40.30.10 105 1mek 5 3.40.30.10 120 75 0.8735 2.773

3 1yb7 4 3.40.50.1820 256 2had 3 3.40.50.1820 310 200 0.8090 4.552

4 1gqn 4 3.20.20.70 252 1nsj 5 3.20.20.70 205 150 0.8051 4.303

5 1ajz 2 3.20.20.20 282 1nsj 5 3.20.20.70 205 150 0.7864 4.067

6 1b1y 3 3.20.20.80 500 1gqn 4 3.20.20.70 252 175 0.7953 5.061

7 2dhn 4 3.30.1130.10 121 2g64 4 3.30.479.10 140 75 0.8261 3.014

8 1b1y 3 3.20.20.80 500 1nsj 5 3.20.20.70 205 125 0.7534 5.988

9 1k03 1 3.20.20.70 399 1nsj 5 3.20.20.70 205 100 0.7777 4.178

10 1id8 5 3.40.50.280 137 1yb7 4 3.40.50.1820 256 75 0.7964 3.606

11 1dbs 6 3.40.50.300 224 1nsj 5 3.20.20.70 205 100 0.7846 5.704

12 1bhe 3 2.160.20.10 376 1vbl 4 2.160.20.10 416 200 0.7167 10.13

13 1ajz 2 3.20.20.20 282 1k03 1 3.20.20.70 399 150 0.7319 7.226

14 1ajz 2 3.20.20.20 282 1b1y 3 3.20.20.80 500 125 0.7785 6.073

15 1gqn 4 3.20.20.70 252 2plc 4 3.20.20.190 274 125 0.7646 6.771

16 1dy4 3 2.70.100.10 434 2ayh 3 2.60.120.200 214 75 0.7493 5.251

17 1ako 3 3.60.10.10 268 1d7o 1 3.40.50.720 297 175 0.7006 8.442

18 1gqn 4 3.20.20.70 252 1k03 1 3.20.20.70 399 200 0.7196 6.302

19 1v3w 4 2.160.10.10 173 1xm0 1 2.170.150.20 147 75 0.6811 11.46

20 1v3w 4 2.160.10.10 173 2dhn 4 3.30.1130.10 121 75 0.6909 11.90

21 1ajz 2 3.20.20.20 282 1dbs 6 3.40.50.300 224 100 0.7869 7.271

22 1id8 5 3.40.50.280 137 2had 3 3.40.50.1820 310 100 0.6823 5.698

23 2f47 3 1.10.530.40 175 4tms 2 3.30.572.10 316 100 0.7159 10.25

24 1gqn 4 3.20.20.70 252 1h17 2 3.20.70.20 754 125 0.7424 9.110

25 1ajz 2 3.20.20.20 282 2plc 4 3.20.20.190 274 100 0.7256 6.446

26 1ako 3 3.60.10.10 268 1avp 3 3.40.395.10 199 75 0.7624 5.990

The first column is the rank of the alignment. Columns 2–9 report the PDB code, principal EC number, CATH code, and length of the aligned proteins. The
last three columns provide details of optimal alignment, namely, the number of aligned residues, n, the RMSIP of the top 10 modes, and the structural
RMSD.
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dynamic features, are shown in Figure 4: hydroxynitrile
lyase-haloalkane dehalogenases (200 aligned residues)
in panel A; human thioredoxin-disulfide isomerase (75
aligned residues) in panel B; dethiobiotin synthetase-
phosphoribosyl anthranilate isomerase (100 aligned res-
idues) in panel C; exonuclease III-enoyl reductase (175
aligned residues) in panel D; cellobiohydrolase I-endo-

1,3–1,4-b-D-glucan 4-glucanohydrolase (75 aligned res-
idues) in panel E; and exonuclease III-human adenovirus
proteinase (75 aligned residues) in panel F. The first two
pairs are examples of alignments between enzymes with
different functions (first EC number) but similar fold
(i.e., same CATH code) while the opposite is true for ex-
amples E and F. Cases C and D are, instead, examples of

Figure 4. Dynamics-based alignments. Structural-dynamic properties of selected alignments are graphically summarized by

rendering, in separate subpanels, in blue the first listed protein and in red the second. Nonaligned (aligned) regions are represented

as thick (thin) tubes. Arrows are used to indicate the directionality and magnitude of the distortions entailed by the most consistent

dynamic space (see last paragraph of Materials and Methods). (A) The portrayed pairs are hydroxynitrile lyase (1yb7) and haloalkane

dehalogenase (2had). Additional modes of this pair are shown in the Supplemental material. (B) Human thioredoxin (1cqh) and

disulfide isomerase (1mek). (C) Dethiobiotin synthetase (1dbs) and phosphoribosyl anthranilate isomerase (1nsj). (D) Exonuclease III

(1ako) and enoyl reductase (1d7o). (E) Cellobiohydrolase I (1dy4) and the endo-1,3–1,4-b-D-glucan 4-glucanohydrolase (2ayh). (F)

Exonuclease III (1ako), and human adenovirus proteinase (1avp). For cases (A,D,E,F ), the location of the catalytic residues or bound

substrates (see text) are highlighted as van der Waals surfaces. The third (rightmost) subpanel of these cases (A,D,E,F) presents the

superposition of the aligned regions.
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alignments between enzymes that differ in both function
and fold.

One of the enzyme pairs with the highest structural-
dynamic correspondence involves hydroxynitrile lyase
(PDB: 1yb7, length 256, EC: 4.1.2.39, CATH:
3.40.50.1820) and haloalkane dehalogenase (PDB: 2had,
length 310, EC: 3.8.1.5, CATH: 3.40.50.1820). These
differ in EC class but have the same first four CATH
codes. Their best alignment, which spans 200 residues,
covers a substantial fraction of both enzymes. Figure 4A
summarizes the results graphically. For clarity, the
aligned regions and associated low-energy modes are
shown separately for the two enzymes. Given the impos-
sibility of conveying graphically the dynamics covered
by the 10 lowest-energy modes, we have reported only the
maximally consistent subspace in the two sets of modes
(see Materials and Methods).

The RMSD over the 200 aligned residues is 4.5 Å
which compares well with the purely structural DALI
alignment of the same proteins: RMSD ¼ 3.0 Å over 226
residues. Indeed, unlike other cases discussed in the
following, this optimal alignment is also very good from
a purely structural point of view. The quality of the
overall consistency of the low-energy modes is also
striking, as it possesses an RMSIP of 0.81, which exceeds
the reference values that typically denote good consis-
tency of molecular dynamics trajectories of the same
protein (Amadei et al. 1999).

Another high-ranking alignment for both the dynamics-
based procedure and the purely structural one is the
pair of enzymes human thioredoxin (PDB: 1cqh, length
105, EC: 4.2.99.18, CATH: 3.40.30.10) and disulfide
isomerase (PDB: 1mek, length 120, EC: 5.3.4.1, CATH:
3.40.30.10) where as many as 75 residues correspond,
with an RMSD as low as 2.8 Å and RMSIP again ex-
ceeding 0.87. Panel B of Figure 4 shows the high quality
of the accord between structure and dynamics. (Particular
enzymes with this fold can show both functions.)

Over a third of the reliable alignments involve pairs
that have dissimilar structural organization. Two notable
examples appear in panels C and D of Figure 4; for the
pairs dethiobiotin synthetase (PDB: 1dbs, length 224, EC:
6.3.3.3, CATH: 3.40.50.300) and phosphoribosyl anthra-
nilate isomerase (PDB: 1nsj, length 205, EC: 5.3.1.24,
CATH: 3.20.20.70) in panel C; and exonuclease III (PDB:
1ako, length 268, EC: 3.1.11.2, CATH: 3.60.10.10) and
enoyl reductase (PDB: 1d7o, length 297, EC: 1.3.1.9,
CATH: 3.40.50.720) in panel D. Even though no strong
global structural correspondences can be established
between these pairs, there is a discernible consistency
of the aligned regions. For the 100 aligned residues of the
pair in Figure 4C and 175 aligned residues in Figure 4D,
the RMSD values are 5.7 Å and 8.4 Å, respectively. The
structural tolerance of this dynamics-based alignment is

such that even elements with different secondary organ-
ization can be put in structural correspondence (e.g.,
loops and helices). In these two cases also, low-energy
modes are in very good agreement (RMSIP equal to 0.78
and 0.70, respectively) and outline a consistent movement
of fairly large compact regions in the enzyme pairs.

Another interesting observation concerns the spatial
proximity of the catalytic sites induced by dynamics-
based alignments. Bartlett et al. (2003) have shown that
evolutionarily distantly related enzyme pairs that catalyze
different reactions on similar structural scaffolds, retain
the location of the active site and of functional structural
elements, suggesting that evolution acts by changing roles
and identities of residues at certain positions rather than
recruiting new positions. Those observations raise the
possibility that, besides local structural patterns, also the
dynamic modulations of the active site region have played
a role in such conservation (Maguid et al. 2006; Sacquin-
Mora et al. 2007). These observations prompted us to
investigate whether any of the dynamics-based pairings
induce correspondences of features related to catalysis or
substrate binding.

Indeed, in our analysis we found that several high-
ranking alignments bring active site residues into prox-
imity. The rightmost panel in Figure 4A shows the
superposition of the 200 aligned residues hydroxynitrile
lyase (PDB: 1yb7) and haloalkane dehalogenase (PDB:
2had), which, being evolutionarily related, are character-
ized by the same four CATH numbers: 3.40.50.1820, and
belong to hydrolases (EC class 3) and lyases (EC class 4),
respectively. Despite the different biological functions of
the two enzymes, the positions of their catalytic residues
are almost coincidental. In particular HIS235, ASP207,
and SER80 of hydroxynitrile lyase are equivalent to
HIS289, ASP260, and ASP124 of haloalkane dehaloge-
nase, respectively.

The alignment between the cellobiohydrolase I (PDB:
1dy4) and the endo-1,3–1,4-b-D-glucan 4-glucanohydro-
lase (PDB: 2ayh), is also noteworthy as they differ at the
CATH architecture level, though they share the same fold
according to SCOP (Murzin et al. 1995). The enzymes,
which are both glycosylases (EC code: 3.2.1), have
analogous catalytic residues (Porter et al. 2004):
GLU212, HIS228, ASP214, and GLU217 for the first
enzyme; and GLU105, ASP107, and GLU109 for the
second one. Despite the fact that only 20% of the larger
enzyme is involved in the alignment, it is interesting to
observe a remarkable space proximity of the two GLU-
ASP-GLU triads (Fig. 4E) which, in both cases, are
located in an antiparallel b-sheet. Further aspects of this
alignment deserve comment. For 1dy4 the active site is
found in a cleft delimited by loops and which can
accommodate the 1-(isopropylamino)-3-(1-naphthyloxy)-
2-propanol ligand (see leftmost panel in Fig. 4E). Also
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for 2ayh the active site is surrounded by loops that
form a groove that can arguably accommodate the
corresponding ligand (see central panel of Fig. 4E). The
dynamics-based alignment has singled out a correspon-
dence between the loops delimiting the binding clefts
(residues 369–379 and 185–195, respectively, for 1dy4
and 2ayh) and the directions of the matching low-energy
modes are intuitively consistent with the opening/closing
mechanism related to substrate binding in both enzymes
(Divne et al. 1998).

We now turn to specific enzyme pairing whose global/
partial structural correspondences are not easily detect-
able, as indicated by the much higher, and more signifi-
cant, dynamics-based ranking compared to the one found
by purely structural criteria (Holm and Park 2000). Two
of these pairings involve the exonuclease III (PDB: 1ako)
which is aligned both with the enoyl reductase (PDB:
1d7o), and with the human adenovirus proteinase (PDB:
1avp). As in previous cases, the dynamics-based align-
ment induces a good superposition of the functionally
relevant regions of the exonuclease III and the enoyl
reductase. As shown in Figure 4D, in fact, the active site
of 1ako is well superimposed with the ligands bound by
1d7o and in both cases the corresponding low-energy
modes develop an outward/inward concerted movement
in the surroundings of these regions. This relationship
is plausible, given the chemical similarity of the ligands
that these proteins bind (Mol et al. 1995; Roujeinikova
et al. 1999; Pidugu et al. 2004; Stockwell and Thornton
2006).

A close relatedness of the nature of the ligands is also
found for the pairing of exonuclease III and human
adenovirus proteinase (Fig. 4F). Both enzymes, in fact,
bind DNA (in double- and single-stranded forms, respec-
tively). The possibility of establishing a dynamics-based
connection between them is particularly interesting as
they are not evolutionarily related and are characterized
by two different architectures, a four-layer sandwich
(CATH: 3.60.10.10) for 1ako and a three-layer (aba)
sandwich (CATH: 3.40.395.10), for 1avp. Despite these
features, the active site of the enzymes is well-super-
imposed after the dynamics-based alignment. Notably,
the aligned region comprises segments of residues that
have been previously suggested to be involved in the
binding of DNA (Mol et al. 1995; Gupta et al. 2004).

Finally, among the alignments involving two structur-
ally unrelated enzymes, we mention the case of dihy-
dropteroate synthetase (PDB: 1ajz) and dethiobiotin
synthetase (PDB: 1dbs). Despite the differences in archi-
tecture, a-b barrel (CATH: 3.20.20.20) for 1ajz and a
three-layer (aba) sandwich (CATH: 3.40.50.300) for
1dbs, and of the catalyzed reactions, the catalytic residues
are found in good correspondence and one-to-one pair-
ings can be established between the three catalytic

residues of 1dbs and three of the four catalytic amino
acids of 1aj7 (Yang et al. 1997; Porter et al. 2004). The Ca

distances of such pairings range from 5.4 Å to 7.5 Å.
The specific cases discussed so far provide concrete

illustrations of the biological implications of the dynamics-
based alignment. They suggest particularly that func-
tional correspondences in protein may be revealed on the
basis of similarity in dynamics, thereby complementing
available powerful strategies based on similarity at the
level of sequence or at the level of structure. It is, in fact,
well known that non-homologous enzymes with similar
mechanisms can share the spatial configuration of active
site catalytic residues. On the basis of this observation
it is possible to detect proteins with related functions by
identifying similar configurations of catalytic residues.
The alignment scheme considered here is motivated by
the fact that some enzymes undergo conformational
changes as an integral part of their function. This
observation has been applied in a spirit analogous to the
structure-based inference mentioned above. In particular
it is considered that proteins with similar mechanisms
might share not only similar configurations of catalytic
residues, but also similarities in dynamics, and that these
similarities might be detectable computationally. The
specific cases discussed here suggest that proteins can
show convergent evolution to shared dynamics related to
function.

Conclusion

From the comparative analysis of large-scale movements
in representatives of different functional categories of
enzymes, approximately 30 outstanding alignments are
identified using established criteria for statistical signifi-
cance. Detailed analysis of the results indicates that good
dynamic similarities in enzyme pairs can arise even in the
absence of strict correspondence of structure or sequence
[pairwise sequence alignments (Chenna et al. 2003)
among members of the set yield 12% 6 2% sequence
identity on average]. Indeed, one-third of the outstanding
pairings involve enzymes with different structural organ-
ization at the global or partial fold level.

Strikingly, it is found that, even in the absence of easily
detectable structural correspondences, dynamics-based
alignment can establish spatial relationships among
regions involved in catalysis or substrate binding. In
addition, the common dynamic features are oriented
toward the structural rearrangements that arguably ac-
company the enzymatic functionality. This implies that
a biological, function-related rationale underlies several
of the outstanding alignments (though this is not neces-
sarily true for all alignments, as large-scale movements
are not expected to be involved in function for every
enzyme).
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These facts suggest that dynamics-based criteria can be
profitably introduced in protein alignment contexts to
expose functionally related correspondences that would
not be capturable, at the same level of significance, using
purely sequence- or structure-based criteria. As a comple-
ment to these established techniques, further develop-
ments of dynamics-based approaches can contribute novel
elements for exploring relationships between sequence,
structure, and function of enzymes.

In this respect the results of the present investigation
along with previous studies of dynamic relatedness within
specific enzymatic families suggest that tools capable of
exposing dynamics-based correspondences may provide a
general quantitative and natural framework to group pro-
teins according to their large-scale movements (Carnevale
et al. 2006; Capozzi et al. 2007). The robustness of
the resulting dynamics-based grouping can, in principle,
be verified by independent means. From a computational
perspective, the consistency of the dynamics of the
aligned regions can be verified by comparing the princi-
pal components of their covariance matrices (Garcia
1992), or other measures of correlation (Lange and
Grubmueller 2006) calculated in extensive MD simula-
tions of the proteins of interest. A conceptually analogous
route can also be envisaged experimentally. Measure-
ments of dynamic order parameters in single-point
mutants of a reference enzyme can be used to construct
a matrix of pairwise dynamic correlations (Mayer et al.
2003).

Furthermore, by cross-referencing results of purely
structural and dynamics-based alignment it might be
possible to address if, and to what extent, structural and
dynamically related functional features have been sub-
jected to different selective pressure. Two extreme sce-
narios may, in fact, be envisaged behind function-related
dynamic correspondences between structurally diverse
enzymes. On one hand common large-scale dynamics
may reflect features present in ancestral proteins/enzymes
preserved during evolution, or they might reflect features
selected by the necessity of well-defined movements for
biological function (requiring only very general relation-
ships between sequences and structures). Analogous
questions have arisen about protein folds: It appears that
both convergence and conservation have resulted in the
limited number of available folds (Chothia 1992; Denton
and Marshall 2001; Lupas et al. 2001; Andreeva and
Murzin 2006; Rose et al. 2006).

It would therefore be most interesting to address these
issues connected to the evolutionary convergence/
conservation of functionally oriented motions, for spe-
cific enzymatic families that have been the subject of
thorough investigation from an evolutionary perspective
(Lesk and Fordham 1996; Xu et al. 1999; Scheeff and
Bourne 2005).

Materials and Methods

Data set selection

The enzymes considered here were selected exploiting the
hierarchical classification provided by the EC (Enzyme Commis-
sion) database. The EC functional annotation provides a trans-
parent, though qualitative, criterion for defining an enzymatic
functional distance which was used in the analysis to investigate
the existence of correlations between functional and dynamics-
based pairwise similarities. The reference data set was constructed
by uniformly covering each of the six EC classes: oxidoreductases,
transferases, hydrolases, lyases, isomerases, and ligases. The en-
tire EC database was filtered to remove overall structural redun-
dancies within each class. Only single-chain and single domain
enzymes (with complete structural information) were treated,
because these are the subjects of the CATH classification (indeed,
as shown in the Supplemental material, dynamics-based alignment
can be performed also with multi-domain proteins). After applying
the selection filter, within each class we kept only one representa-
tive per topology (first three CATH numbers), by default the longest
enzyme. Very few selected enzymes had highly mobile residues at
exposed termini which were omitted from the structural descrip-
tion. The resulting set consisted of 76 enzymes with the following
functional distribution: oxidoreductases (eight), transferases (12),
hydrolases (36), lyases (12), isomerases (seven), and ligases (one).
The total structural variability contains 56 different topologies,
representing three CATH structural classes and 15 architectures.

Stochastic exploration of dynamics-based alignments

Statistically significant consistencies of large-scale movements
were sought for each of the 2850 distinct pairings of the 76
representative enzymes. The degree of consistency of any pairing
was established by means of a single scoring parameter, s,
measuring the accord of the spatial position and concerted move-
ments of residues in pairwise correspondence on the two enzymes.
Given the differences in length and structural organization it is
neither feasible nor meaningful to seek a one-to-one correspon-
dence of all amino acids in two proteins. We therefore relied on a
stochastic exploration of partial, yet statistically significant,
correspondences between subsets of n residues between the two
proteins. The stochastic search of putative alignments of fixed
length n residues is performed by partitioning the n residues in
blocks of at least 10 residues for each protein. The block
assignment is done independently for each protein; as a result
the number of blocks and their lengths are generally different
for the two proteins. The residues taking part in the blocks are
numbered sequentially from the N to the C terminus. The align-
ment is defined as the pairwise correspondence in marked residues
with the same index. Starting from an initial block assignment
in the two proteins we modify its block sequence by merging/
splitting or shifting the blocks. Each trial alignment is accepted/
rejected with the standard Metropolis criterion (within a replica-
exchange scheme) to promote the maximum score, sn. The optimal
alignment is finally found by maximizing sn over the explored
values of n ¼ 75,100,125,��� (the largest value of n being
determined by the shortest of the two proteins). The maximized
value of sn is taken as the final alignment score.

Low-energy modes of aligned residues

For each tentative alignment it is necessary to identify the
lowest-energy modes of the two proteins of the ‘‘marked’’
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amino acids only, and to compare them in a common Cartesian
reference frame. We shall, accordingly, assume that one of the
two proteins has been roto-translated to minimize the root mean
square distance between the matching residues. After the
optimal superposition, a model free energy is introduced to
characterize the thermal equilibrium fluctuations of the marked
residues. To this purpose we adopted the well-established elastic
network approach (Bahar et al. 1997; Hinsen 1998; Atilgan et al.
2001; Delarue and Sanejouand 2002; Micheletti et al. 2004).
The model energy is, in fact, constructed by introducing a chain
connectivity term plus harmonic interactions between pairs of
spatially close Ca’s which disfavor changes of Ca’s separation
from the native value. For small near-native fluctuations, the
resulting energy F penalizes the displacement d~xk of the kth Ca

from its reference position in a quadratic manner,

F =
1

2
+
i; j

d~xiMijd~xj (1)

The matrix M is symmetric and its entries are calculated
according to the prescription of the b-Gaussian network model
of Micheletti et al. (2004) which also allows inclusion of the
effective interactions among amino acid side chains (whose
positions are derived from the Ca centroids from a deterministic
geometric construction). Straightforward, the harmonicity of F
lends to the characterization of a protein’s fluctuations and of
the lowest-energy modes in terms of the eigenvalues and
eigenvectors of M. Typically, the calculated modes are in very
good accord with the essential dynamic spaces obtained from
extensive atomistic molecular dynamics trajectories. This jus-
tifies a posteriori the viability of the elastic network approach
beyond the expected range of validity of the (quasi)-harmonic
free energy approximation (Levitt et al. 1985; Horiuchi and Go
1991; Brooks et al. 1995; Hinsen et al. 2000; Pontiggia et al.
2007).

The model energy F is used to compute, for each protein,
the effective matrix, ~M, providing the quadratic potential of
mean force acting on the sole degrees of freedom of interest, that
is, the positions of the n Ca’s marked for alignment. In the
following we shall assume that the residues have been re-
indexed so that the first n residues (out of a total of N residues)
correspond to the marked ones. To illustrate how ~M is calculated
it is useful to divide the M matrix into blocks reflecting the
distinction of the degrees of freedom that we wish to retain (the
displacement of the first n residues), from the rest:

M =
Ma V
VT Mb

� �
(2)

where the superscript T denotes the transpose. The physical
interpretation of the blocks is straightforward: Ma corresponds
to the interactions among the first n residues themselves, Mb

contains the interactions within the remaining N-n residues, and
V contains the interactions between the two groups.

The problem of finding ~M is analogous to the more familiar
one of calculating the implicit-solvent force field among amino
acids. In that case, Ma would correspond to the bare amino acid
interaction in the explicit-solvent description, Mb would be the
interaction of water molecules, and V the interaction between
amino acids and the solvent. Owing to the simple quadratic
nature of F in Equation 1, the calculation of the effective energy

~Fðd~x1; d~x2; . . . ; d~xnÞ governing the effective interaction among
the first n residues can be done explicitly (Hinsen et al. 2000;
Carnevale et al. 2006, 2007) yielding

~F =
1

2
+
n

i; j = 1

d~xi
~Mijd~xj [

1

2
+
n

i; j = 1

d~xi½Ma
ij + DMij�d~xj (3)

where

DM = � V ½Mb��1VT (4)

where [Mb]�1 is the pseudo inverse of Mb. It is apparent from the
above equation how the interactions mediated by the V matrix
complement the bare ones to yield the final ‘‘dressed’’ inter-
action matrix ~M. The lowest-energy modes of the matching
residues are finally identified as the eigenvectors associated
with the smallest nonzero eigenvalues of ~M.

In the following we shall indicate with f~v a
i gi=1;...;n and

f~w a
i gi=1;...;n the ath low-energy mode of the marked residues

for the first and second protein, respectively.

Alignment score

As is customary we shall assume that the 10 lowest-energy
modes are sufficient to account for the essential dynamics of the
aligned residues (Amadei et al. 1999). Accordingly, the quality
of each tentative alignment involving n residues is quantified
with the following combined measure of spatial and dynamic
consistency:

qn =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxf0; 1

10
+
10

a;b = 1

½+
n

j = 1

~v a
j � ~w

b
j �½+

n

i = 1

~v a
i � ~w

b
i f ðdiÞ�g

s
(5)

where di is the distance between the Ca positions of the ith
aligned residue of the two proteins, and f (d) ¼ [1 – tgh((d – dc) /
2)]/2 is a distance weighting factor interpolating the asymptotic
values of 0 and 1 for distances, respectively, much larger and
smaller than dc ¼ 4 Å. Observe that qn is bounded between 0 and
1, and its value is one in the case of a perfect correspondence
between both low-energy modes and distances of aligned
residues (which we recall have been previously optimized by
the superposition of the aligned residues).

The measure in Equation 5 does not depend on the
choice of the basis of the lowest-energy modes and gener-
alizes the familiar root mean square inner product,

RMSIP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10 +
10

a;b=1

+
n

i=1

~v a
i � ~w

b
i

����
����
2

s
used to measure the consistency

of the dynamic spaces of the same protein in two different MD
trajectories. The inclusion of the structural modulation, f (di), is
sought here as we wish to promote not the mere overall dynamic
correspondence of matching residues per se but only when these
also have a good space proximity. The alignment score is finally
defined in terms of Equation 5 as sn ¼ qn – f (n) where f(n) ¼
0.5115*exp(–n/336) provides the best fit to the approximately
exponential trend of the average values of q(n) recorded over
the subset of 56 representatives with different topology (see
Supplemental material). The subtraction of f(n) ‘‘regularizes’’
the raw measure, qn, allowing a homogeneous comparison of
alignments of different length.
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Graphical representation of corresponding modes

The score of Equation 5 is invariant upon replacing the
orthonormal set of the ~v ’s (or ~w’s) with another one obtained
by their suitable linear combination. This property is used to
convey in a graphically optimized way the consistency of two
sets of low-energy modes. The first optimized basis vector in
each set, ~v 0i=+j=1;...;10aj~vj and ~w0i=+j=1;...;10bj~wj are found by

optimizing the linear weights, a’s and b’s, so that the scalar
product ~v 01 � ~w 01 is maximum (the unit norm of ~v 0i and ~w 0i is
implied). The procedure is iterated to define the remaining
vectors of the new basis, which must be orthogonal to those
already identified.

Electronic supplemental material

List of representative enzymes; distribution of optimized align-
ment scores; low-energy modes alignment for hydroxynitrile
lyase and haloalkane dehalogenase; generality of the alignment
method.
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